
© 2009 IBM Corporation

Test Less – Test Right

Rakesh Ranjan

May 17, 2011 SSTC, Sal Lake City

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Test Less - Test Right.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
IBM Corporation,1 New Orchard Road ,Armonk,NY,10504-1722

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© 2009 IBM Corporation 2

Short Bio:

 Manager of Software Testing & QA at IBM silicon Valley Lab, San Jose CA
– http://www-01.ibm.com/software/data/db2/

 Part time Lecturer, Department of Computer Engineering, San Jose State University
– http://www.sjsu.edu/people/rakesh.ranjan/

 17 years of IT industry experience:
– Software systems architecture on Linux/Unix/IBM Midrange
– Large software product development & testing
– Extensive Database & Business Analytics experience

 Co-authored 2 books on DB2 and Business Intelligence

 Frequent speaker at Midrange system conferences

 Strategic thinking and execution with completeness of visions

http://www.linkedin.com/in/ranjanr

http://www.ranjanr.blogspot.com/

Source: N/A

SSTC May 17, 2011

© 2009 IBM Corporation 3

Agenda

 Introduction/Smarter Testing

 Random Sampling

 Combinatorial Testing Techniques

 Code Coverage and gap analysis

 Memory leak analysis

 Change centric Testing

 Orthogonal Defect classification

 Smarter Test Infrastructure

 Exploratory Testing Techniques

Source: N/A

SSTC May 17, 2011

© 2009 IBM Corporation 4

Why Smarter Testing?

 Finding and fixing a software problem after delivery is extremely expensive(x100) than fixing
it in early design or requirement phase.

 Current software projects spend 40-50% of their time on avoidable work.

 20% of defects generate 80% of avoidable work

 10% of defects cause 90% of system downtime

 Peer reviews catch 60% of the defects

 Scenario based reviews (focused reading techniques) catch 35% more defects than general
reviews

 Personal checklists and disciplined practices can reduce defect introduction by 75%

Source: N/A

SSTC May 17, 2011

© 2009 IBM Corporation 5

Smarter Testing means Strategic Defect Reduction

Source: N/A

SSTC May 17, 2011

Checklist/Tools

Customer Scenario
Validation

Proactive Bug
Fixing in Field

Test Prioritization

Regression Testing

Test
Planning

Coverage gap
analysis

Continuous
Integration /

Reports

Static Code
Analysis

The focus is on catching expensive bugs
early in release cycle

To deliver a quality product and feature
that customer wants

© 2009 IBM Corporation 6

Challenges of Complexity in a Large Product Environment

 Too many branches & simultaneous releases
– Multiple development releases
– Multiple maintenance releases

 Too many platforms to support
– Debug and optimized builds on various platforms and architecture
– Special customer builds & Tests

 Maintaining Quality while doing frequent merges
– Code dependency forces frequent merges with parent branch
– Need to keep sanity of the branch on all platforms

 Keeping up with changes
– Changes in OS/kernel/patches
– Changes in compiler / parser / runtime components

Source: N/A

SSTC May 17, 2011

© 2009 IBM Corporation 7

Cost of Quality

 How to respond to people who complain about cost of quality?
– “If testing costs more than not testing then don’t do it” - Kent Beck

 Why can’t we just test everything?
– "I want full testing coverage of the software. Our policy is zero

tolerance. We won't have bad quality on my watch.“
– Lack of appreciation for complexity of testing

 We use statistics, confidence levels and calculated risk

 Thankfully, Mathematics and Statistics are there to help

Source: N/A

SSTC May 17, 2011

© 2009 IBM Corporation 8

Statistics – Random Sampling

 Randomly selecting combinations for testing

 Very high number of tests required for very high quality goal

 Coverage can not be used as key measurement of quality

 Express a level of confidence for a level of quality

 For extremely high level of quality, approach does not make sense

Source :http://www.developerdotstar.com/mag/articles/test_smarter_not_harder.html

SSTC May 17, 2011

© 2009 IBM Corporation 9

Pairwise Testing and Its Effectiveness

 With assumption that bugs in software is caused not by individual input but by combination
of two factors

 Is designed to get coverage of every possible combination of two variables, without testing
every possible combination of all the variables

 Very high number of tests required for very high quality goal

 For reasonable quality goal, effectiveness is high

We measured the coverage of combinatorial design test sets for 10 Unix commands:
basename, cb, comm, crypt, sleep, sort, touch, tty, uniq, and wc. […] The pairwise tests gave
over 90 percent block coverage. [D. M. Cohen et al., 1996]

A set of 29 pair-wise AETG tests gave 90% block coverage for the UNIX sort command. We
also compared pair-wise testing with random input testing and found that pair-wise testing
gave better coverage. [D. M. Cohen et al., 1997]

Source: http://www.pairwise.org/results.asp

SSTC May 17, 2011

© 2009 IBM Corporation 10

Orthogonal Array Testing Strategy (OATS)

 Each pair of input occurs only once

 All pairwise combinations have been covered.

 Also provides redundant coverage of every single
value for each control

 Applying orthogonal array technique in testing
requires determining the size of the array

 No of combinations = no of test cases

 Tools can be used to generate array and map the
actual values to the variables

 OATS is a proven efficient method of complex
testing

 OATS combined with boundary value analysis can
be very powerful test technique

 Source: If applicable, describe source origin

SSTC May 17, 2011

© 2009 IBM Corporation 11

Code Coverage & Gap Analysis – Execution != Tested

 Structural Testing(White Box)
– Code driven

 Functional Testing(Black Box)
– Requirements driven

 Statement coverage

 Decision coverage

 Condition coverage

 Using code coverage for better

regression system

Source: If applicable, describe source origin

SSTC May 17, 2011

 How does it work?
– Code is instrumented, static profiling is

generated
– Test case execution time, dynamic

profiling is generated
– Both profiling merged and report

generated

© 2009 IBM Corporation 12

Coverage Analysis – Improving Your Test Harness

 Which test case caused the coverage

 Quality of covered code?

 What is the correlation between block coverage and decision coverage

 What is the correlation between complexity of code and defect

 What is the cost effective way of identifying uncovered code

 Is complexity a better predictor of defects than lines of code?

Source: If applicable, describe source origin

SSTC May 17, 2011

© 2009 IBM Corporation 13

Memory Leak Analysis – Different Approaches

Memory Leak is closely related to the notion of lifetime of heap memory(run time memory); A
pool is being leaked if the program or the run time system doesn’t reclaim its memory when
the lifetime has ended. Memory leak is difficult to find and expensive to fix.

 Traditional Approach to find memory leak
– A gradual reduction in free memory, eventually leading to paging
– Application becoming slower and slower
– Application memory footprint getting bigger
– Dump the memory block allocation
– Grep for pattern and comparing for Pools and blocks
– Problem of false positives; manual work

 Contradiction approach
– Reverse heap analysis

Source: If applicable, describe source origin

SSTC May 17, 2011

© 2009 IBM Corporation 14

Finding Memory Leak by Contradiction Approach

 The example function takes a linked list x
as an argument and returns the reversed
list pointed to by y

 Statement 12 is taken as the point where
memory leak might occur

 Reverse inter-procedural flow analysis is
done from that point to disprove the
negation

 Errors are disproved by contradicting their
presence

Source: http://www.cs.cornell.edu/~rugina/papers/sas06.pdf

SSTC May 17, 2011

© 2009 IBM Corporation 15

Automated Error Prevention

 Automated Error Prevention
– You should find (or learn from someone who has found and analyzed) a bug only once.

The knowledge gained in the process of finding and analyzing bugs should be used to
improve the process so that you never encounter the repeat occurrences of similar bugs
in the product.

– Example: database instance shutdown due to resource leak
– Memory was allocated but not de-allocated after being used.
– One way to approach the problem is to get this fixed
– Automated Error Prevention approach will be to design the practices where every

allocation will be forced to use de-allocation, so that problem does not re occur.

 How to enforce automated error prevention?
– Code reviews (inefficient way)
– Static code analysis
– Toll that scans such coding mistakes and reports to developers

Source: If applicable, describe source origin

SSTC May 17, 2011

© 2009 IBM Corporation 16

Change-Centric Testing

Source: If applicable, describe source origin

SSTC May 17, 2011

 Methodology to capture the impact of incremental code
changes on the state space of the executable

 Black shades represent actual change in the
code(methods)

 Dark gray represent methods that depend on changed
code

 Light gray represent third order change impact
(functionalities that might be impacted by black and dark
gray)

 Overall sanity of the codebase needs to be ensured by
running other regression test

© 2009 IBM Corporation 17

Change-Centric Testing – How To

 Understanding the dependency between caller/callee in
an executable; tools can be used to generate call graph;
store data for tools to query/retrieve

– Callgrind (call graph generator)

 Understanding mapping of source files to test cases and
code coverage

– Define mapping and store the data
– Identify gaps in coverage
– Develop test plan to address coverage gaps

Source: If applicable, describe source origin

SSTC May 17, 2011

© 2009 IBM Corporation 18

Smarter Infrastructure

Source: If applicable, describe source origin

SSTC May 17, 2011

On-demand
Build & Test

Easy & efficient
Development environment

Product build & validation
On multiple platforms

Continuous code
Integration

Integration with
Defect tracking

Auto notifications
& Reporting

Product delivery
& packaging

Code Integration
With main branch

© 2009 IBM Corporation 19

Code Quality Management – solution & challenges

Source: If applicable, describe source origin

SSTC May 17, 2011

 Tools like Static analysis and other
enforcement built into check-in system

 Regression system in place

 Automated build break reporting system
that points to individual check-in

 Continuous monitoring of testing and
standards compliance

 Self auditing and correction

 Project management dashboard to report
key development performance indicators

 Should be able to track progress of
distributed (geographically dispersed)
teams

 Integration with existing tools such as
SCM

 Individual compliance tracking and
reporting

 No impact on existing processes

 Real time feedback

© 2009 IBM Corporation 20

Defect Analysis

Source: If applicable, describe source origin

SSTC May 17, 2011

 Root Cause Analysis
– Captures extensive data on defects
– Time consuming
– Expensive
– Points to too many actions as a

result

 S-curve
– Easy to monitor trends
– Inadequate capture of semantics
– Not capable of suggesting

corrective actions

© 2009 IBM Corporation 21

Orthogonal Defect Classification (ODC)

Source: http://www.research.ibm.com/softeng/ODC/ODCEG.HTM#defects

SSTC May 17, 2011

 Is a scheme to capture the semantics of the defect
quickly

 Makes mathematical analysis possible on defects

 Analysis of ODC data provides diagnostics
method for various phases of SDLC

 Classification captures how the defect
was discovered, the effect it would have
on customers or did have on
customers, and the scope and scale of
what had to be fixed.

 Validation, which is performed by a
subset of the classification team, helps
ensure that the classification step was
done correctly.

 Assessment analyzes the data to
understand what it means. It is normally
done by a very small team on your
product or in your area.

 The first three steps only identify what
needs to be done. Identifying and
implementing those actions requires
skill, determination and management
support.

© 2009 IBM Corporation 22

Exploratory, Ad-hoc and Scripted Testing

Source: If applicable, describe source origin

SSTC May 17, 2011

The plainest definition of exploratory testing is test design and test execution at the same time.

- James Bach
 Which functionality is most important to the project's intended purpose ?

 Which functionality is most visible to the user ?

 Which functionality has the largest financial impact on users ?

 Which aspects of the application are most important to the customer ?

 Which aspects of the application can be tested early in the development cycle ?

 Which parts of the code are most complex, and thus most subject to errors ?

 Which parts of the application were developed in rush or panic mode ?

 Which aspects of similar/related previous projects caused problems ?

 Which aspects of similar/related previous projects had large maintenance expenses ?

 Which parts of the requirements and design are unclear or poorly thought out ?

 What do the developers think are the highest-risk aspects of the application ?

 What kinds of problems would cause the worst publicity ?

 What kinds of problems would cause the most customer service complaints ?

 What kinds of tests could easily cover multiple functionality's ?

 Which tests will have the best high-risk-coverage to time required ratio ?

© 2009 IBM Corporation 23 Source: If applicable, describe source origin

SSTC May 17, 2011

